Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(1): e0292519, 2024.
Article in English | MEDLINE | ID: mdl-38271327

ABSTRACT

Cashew nuts are among the main cash crops in coastal Kenya, due in large part to their high nutritional value. Unfortunately, they also make them highly susceptible to mold contamination, resulting in biodeterioration of the nutritional value and potential contamination with toxic secondary metabolites, such as aflatoxins, that cause them to be rejected for sale at the market. We determined the population diversity of the Aspergillus species and their role in aflatoxin contamination in cashew nuts in selected coastal regions of Kenya. Fifty raw cashew nut samples were collected from post-harvest storage facilities across three counties in Kenya's coastal region and examined for moisture content and the presence of Aspergillus fungi. About 63 presumptive isolates were recovered from the cashew nuts. ITS and 28S rDNA regions were sequenced. The aflD, aflM and aflR genes were amplified to identify the potentially aflatoxigenic from the Aspergillus isolates. The Aflatoxins' presence on the isolates was screened using UV and the ammonia vapour test on coconut milk agar and validated using ELISA assay. A comparison of cashew moisture content between the three counties sampled revealed a significant difference. Sixty-three isolates were recovered and identified to section based on morphological characters and their respective ITS regions were used to obtain species identifications. Three sections from the genus were represented, Flavi and Nigri, and Terrei with isolates from the section Nigri having slightly greater abundance (n = 35). The aflD, aflM and aflR genes were amplified for all isolates to assess the presence of the aflatoxin biosynthesis pathway, indicating the potential for aflatoxin production. Less than half of the Aspergillus isolates (39.68%) contained the aflatoxin pathway genes, while 22.22% isolates were aflatoxigenic, which included only the section Flavi isolates. Section Flavi isolates identification was confirmed by calmodulin gene. The presence of species from Aspergillus section Flavi and section Nigri indicate the potential for aflatoxin or ochratoxin in the cashew nuts. The study established a foundation for future investigations of the fungi and mycotoxins contaminating cashew nuts in Kenya, which necessitates developing strategies to prevent infection by mycotoxigenic fungi, especially during the storage and processing phases.


Subject(s)
Aflatoxins , Anacardium , Aflatoxins/analysis , Nuts/chemistry , Kenya , Aspergillus , Food Contamination/analysis , Aspergillus flavus/genetics
2.
PLoS One ; 17(12): e0278717, 2022.
Article in English | MEDLINE | ID: mdl-36454974

ABSTRACT

A high yield of isolated protoplast and reliable regeneration system are prerequisite for successful somatic hybridization and genome editing research. However, reproducible plant regeneration from protoplasts remains a bottleneck for many crops, including cassava. We evaluated several factors that influence isolation of viable protoplasts form leaf mesophyll, induction of embryogenic calli, and regeneration of plants in three cassava cultivars; Muchericheri, TMS60444 and Karibuni. A relatively higher protoplast yield was obtained with enzyme mixture containing 5 g/L Macerozyme and 10 g/L cellulase. Muchericheri recorded relatively higher protoplast yield of 20.50±0.50×106 whereas TMS60444 (10.25±0.25×106) had the least protoplast yield in 10 g/L cellulase and 4 g/L cellulase. Freshly isolated protoplast cells were plated on callus induction medium (CIM) solid medium containing MS basal salt, 60 g/L D-glucose, 30 g/L sucrose, B5 vitamins, 100 mg/L myo-inositol, 0.5 mg/L copper sulphate, 100 mg/L casein hydrolysate, 4.55 g/L mannitol, 0.1 g/L MES, 10 mg/L picloram and 3 g/L gelrite to induce protoplast growth and development. The three cultivars reached colony formation but no further development was observed in this culture method. Protoplast growth and development was further evaluated in suspension culture using varying cell densities (1, 2 and 3× 105 p/mL). Development with highest number of minicalli was observed in cell density of 3× 105 p/mL. Minicalli obtained were cultured on CIM supplemented with 10mg/L picloram. Callus induction was observed in all cell densities with the cultivars. Highest somatic embryogenesis was observed in 2× 105 p/ml while no somatic embryogenesis was observed in cell density of 1×105 p/mL. Somatic embryos were matured in EMM medium supplemented with 1 mg/L BAP, 0.02 mg/L NAA and 1.5 mg/L GA3 then germinated in hormone free medium for plant regeneration. This protocol which used simple mixture of commercial enzymes is highly reproducible and can be applied in biotechnology research on cassava.


Subject(s)
Callosities , Cellulase , Manihot , Protoplasts , Picloram , Vegetables , Plant Leaves , Regeneration
3.
Front Plant Sci ; 13: 1009860, 2022.
Article in English | MEDLINE | ID: mdl-36388608

ABSTRACT

Cassava is the world's most essential food root crop, generating calories to millions of Sub-Saharan African subsistence farmers. Cassava leaves and roots contain toxic quantities of the cyanogenic glycoside linamarin. Consumption of residual cyanogens results in cyanide poisoning due to conversion of the cyanogens to cyanide in the body. There is a need for acyanogenic cassava cultivars in order for it to become a consistently safe and acceptable food, and commercial crop. In recent years, the CRISPR/Cas system, has proven to be the most effective and successful genome editing tool for gene function studies and crop improvement. In this study, we performed targeted mutagenesis of the MeCYP79D1 gene in exon 3, using CRISPR/Cas9, via Agrobacterium-mediated transformation. The vector design resulted in knockout in cotyledon-stage somatic embryos regenerated under hygromycin selection. Eight plants were recovered and genotyped. DNA sequencing analysis revealed that the tested putative transgenic plants carried mutations within the MeCYP79D1 locus, with deletions and substitutions being reported upstream and downstream of the PAM sequence, respectively. The levels of linamarin and evolved cyanide present in the leaves of mecyp79d1 lines were reduced up to seven-fold. Nevertheless, the cassava linamarin and cyanide were not completely eliminated by the MeCYP79D1 knockout. Our results indicate that CRISPR/Cas9-mediated mutagenesis is as an alternative approach for development of cassava plants with lowered cyanide content.

SELECTION OF CITATIONS
SEARCH DETAIL
...